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Abstract—Transformer has achieved admirable success in
sequential tasks. However, the model only considers the order of
items in the sequence, not the relative distances, which weakens
the relevance between items. To this end, we propose a novel
Sequence and Distance Aware Transformer (SDAT) for recom-
mendation systems. Specifically, we first apply the Transformer
to handle the interaction between the items effectively. Then,
Gated Recurrent Unit can be designed to aggregate information
on an item-by-item basis in sequential information, meanwhile,
we adopt the attention mechanism to focus on items with smaller
time intervals to indicate high relevance. We also add a time
gain function to augment the influence weight of recent items.
Finally, the processing result of the time information of our
integrated items replaces the positional encoding representation
of the original Transformer. Extensive experiments on three
real-world datasets show that SDAT outperforms state-of-the-art
methods.

Keywords—recommendation systems; time-aware; attention;
transformer

I. INTRODUCTION

In the age of information explosion, recommendation sys-
tems(RSs) determine user interests by analyzing users’ his-
torical behavior data, and recommend items that may be of
interest to these users. Existing RSs rely heavily on explicit
feedback (i.e., user ratings). However, these data types may
be extremely sparse. Many users did not even leave any
explicit feedback on the online platforms. In addition, explicit
feedback generated by users (e.g., reviews) is not all true
and objective, which greatly impacts RSs. To overcome this
obstacle, researchers have attempted to enhance RSs by incor-
porating implicit feedback, such as browsing, purchase, and
click-through interactive items, which are authentic and easier
to collect. Implicit feedback usually happens successively in
a sequence rather than an isolated manner [1], each implicit
feedback item has a certain dependence on its position [2] in
the sequence.

Motivated by the sequential dependencies that commonly
exist in implicit feedback data, the sequential recommendation
has emerged with increasing attention, which aims to predict
the next item that he/she might interact [3]. In the early stage,
sequential recommendation mainly explores frequent patterns,
itemsets, sequences that frequently appeared in the products
purchased by the user, and analyzes which items are often
purchased at the same time when shopping, but the sequence
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(a) User's online shopping history sequence

(b) User's online shopping history sequence with time information

Fig. 1. An example of a user’s online shopping record, (a) the shopping record
is only sequential, (b) the shopping record with time information, including
the user’s shopping basket item.

information of the purchased item in the ongoing conversation
is ignored. Later work investigates the use of Markov chains
[4], which means the transition of each state in the sequence
only depends on the previous n states.

Since Recurrent Neural Network (RNN) and its variants
(e.g., Long Short-Term Memory (LSTM) and Gated Recur-
rent Unit (GRU), etc.) [5] demonstrate their effectiveness
in processing sequence data, RNN-based models have at-
tracted increasing interest in sequential recommender systems.
However, RNN-based models face the gradient vanishing
and exploding problem and struggle to capture long-term
dependencies in the historical sequences. To overcome these
obstacles, a new model named Transformer [6, 7] has achieved
admirable success in the sequence tasks. Different from RNN-
based methods, Transformer can access any part of the history
regardless of distance, making it potentially more suitable for
grasping recurring patterns with long-term dependencies [8].

Despite their prevalence, previous Transformer-based mod-
els are not sufficient to learn sequential user behaviors.
Although they can learn long-range dependencies between
items, previous models implement with no specific means
to take the user’s short-term behavior into account. A user’s
choice of items depends on not only long-term historical
preferences but also recent short-term preferences(e.g., the
recently interacted items). Therefore, considering short-term
preference is desirable and necessary.

Previous models mainly focus on the order information,
which ignores the valuable patterns underlying the “distance”
between items. Here, the “distance” refers to the time interval
between items. For example, A historical order made by a
user on the online platform is shown in Fig. 1, a user has just
purchased a item, and perhaps the user’s purchase intention
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is continuous, then the next item the user wants to purchase
may be affected by the current item. However, if the user
intends to purchase the next item a long time later, since
the time between the two purchases is very long, there may
be no correlation between the two items. Another common
scenario is that users often purchase multiple items at the
same time in the form of a shopping basket, and the sequential
recommendation system is no longer applicable. It can be seen
that time information is essential, which means that items with
small time intervals, especially the items with no time interval
(i.e., items are purchased together), are likely to be highly
correlated [9].

To address the aforementioned restrictions, we introduce
a new recommendation model called SDAT, which adopts
Sequence and Distance Aware Transformer to the sequential
recommendation. Specifically, for the restriction of the left-to-
right unidirectional model, Transformer is applied in our study
to derive long-term patterns of users over time. To augment the
importance of recent items, we use exponential time gain func-
tion to construct an item time representation on the time series
of the items. To consider the distance information between
items, we apply GRU-Attention(GRU-Att) mechanism to the
time intervals to calculate the relative distance between items.
Finally, the time interval representation and the item time
representation are used as weights, which are multiplied by
the sequence of continuous representations, and input results
into the model to predict the probability of purchasing the next
item. Our main contributions are listed as follows:

• We propose that the position embedding in the Trans-
former model is augmented by the sequence and distance
between items, i.e., time sequence features and time interval
features, which are complementary and generalized.

• We use the attention-based GRU model to process distance
information, in order to selectively retain and utilize the
dependencies between items, and to make Transformer model
have the ability to learn the interaction between items more
flexibly.

• The time gain factor is added to the sequence information
of the item, with which our model can capture both the short-
term and the long-term preferences of users.

II. RELATED WORK

A. Recommendation Systems

Sequential recommendation predicts the next item that may
be clicked or purchased based on the user’s implicit feed-
back of the items in the anonymous sequence. For example,
Sarwar et al. [10] compared the difference between the item
correlation and the cosine similarity for computing item-
item similarities. Rendle et al. [4] used the decomposable
personalized Markov chain method, combining the first-order
Markov chain and matrix factorization (FPMC) to simulate
personalized sequential behavior.

Recently RNN has been employed to capture previously
interaction items for current interest prediction. Hidasi et al.
[11] applied recurrent neural networks (RNN) to RSs, and
it not only proved that RNN could be applied to sequential

recommendation problems, but also can design RNN with
GRU Model (GRU4Rec) and this problem was regarded as
time series prediction. Hu et al. [12] proposed a shallow neural
network structure, by calculating the relative distance between
context items, the relevance between items is captured. Liu
et al. [13] utilized STAMP to emphasize short-term memory
priority and used attention network to model the conversation,
which improved the importance of the last interactive item
in the target conversation. Several recent studies also inves-
tigated its capability in session-based recommendation. SR-
GNN [14] utilized the complementarity between self-attention
and the graph neural network to augment the recommendation
performance. CoSAN [8] with self-attention for session-based
recommendation, was proposed to learn long-range dependen-
cies between collaborative items and generate collaborative
session representation.

There exists a time-aware RSs similar to the sequential
recommendation. Time dynamic information is integrated into
the time series model to provide the basis for user prefer-
ence refinement. For example, Session-based Temporal Graph
model [15] was proposed to model user’s long-term and short-
term preferences over time. TeRec [16] was proposed for
temporal RSs over tweet streams, which considers shifts of
users’ interests and popularity of topics as time passes by, and
it aims to provide suitable topics for users at the right time.
Liu et al. [17] provided a time dynamic model that integrates
the user interests and evolving preferences in a specific period
of time. These models help understand the user’s preferences
fully but ignore the multiple items that the user interacts with
simultaneously.

Our research is inspired by the above literature review: It
is important to improve the last interactive item. RNN applied
to recommendation system can handle sequence relationships.
Attention mechanism makes it easy to memorize very long-
range sequence dependencies in RNN, and helps RNN to
concentrate on important parts of inputs. Furthermore, atten-
tion mechanism can make the model obtain higher accuracy.
In this work, we utilize self-attention to model dependencies
and the importance of user behavioral patterns in purchasing
combination products.

B. Transformer

Transformer is a strong sequence parallel modeling tool;
for instance, SASRec [18] sought to identify which items are
relevant from a user’s action history, and uses them to predict
the next item. Since the Transformer uses sinusoidal position
embedding [6] and learns absolute position embedding, it
does not explicitly model relative position information in its
structure. The result is that the Transformer can only learn the
sequence of each item in the sequence, which is an obvious
weakness. Li et al. [19] argued that the distance between two
items should be considered in Transformer. TiSASRec [19]
modelled the relative time intervals and absolute positions
among items to predict future interactions, This model not
only considers the absolute positions of items like SASRec,
but the relative time intervals between any two items. Although

118

Authorized licensed use limited to: Renmin University. Downloaded on January 14,2022 at 04:19:22 UTC from IEEE Xplore.  Restrictions apply. 



the model has achieved good experimental results, it can still
process relative distance information in more detail.

Dehghani et al. [20] used a self-attention mechanism to
exchange information across all positions in the sequence,
thereby generating a vector representation for each position
that is informed by the representations of all other positions
at the previous time-step. Dai et al. [7] proposed a novel neural
architecture Transformer-XL that enables learning dependency
beyond a fixed-length without disrupting temporal coherence,
the model consists of a segment-level recurrence mechanism
and a novel positional encoding scheme. The previous methods
were to remedy the loss of relative position information caused
by the sum of word embedding and position embedding. These
studies provide a meaningful reference for the optimization of
the model.

III. SEQUENCE AND DISTANCE AWARE
TRANSFORMER

A. Problem Statement

We sort the historical item information of each user by time
and connect all the user’s items. Therefore, the time series
structure of the order is composed of the item sequence and
the order time series, and each item corresponds to the order
time one by one.

The task of our model is to learn the order sequence
of users and predict an item that the user interacts with
the next time. Therefore, we mask the last item before
recommending, but keep the corresponding time of the last
item. As shown in Fig.2, we let Item =

{
i1, i2, . . . , i|u|−1

}
denote a set of items and Lable = i|u| as our target item,
|u| denotes the number of actions in the user’s behavior
sequence; Time =

{
t1, t2, . . . , t|u|−1, t|u|

}
represent a set of

timestamps of the items, where t|u|−1 means a user interacted
with an item i|u|−1 at time t|u|−1; all other events have non-
negative delta-timestamps. ∆ =

{
∆1,∆2, . . . ,∆|u|−1

}
denote

the time interval between adjacent items in Item. That is,
∆|u|−1 is the time distance between t|u|−1 and t|u|. We merge
Item, T ime,∆ and Lable in sequences and input them into
our model.

We project Item, T ime, and ∆ as three kinds of embedding
spaces, then integrate these embeddings and input them into
the Transformer. Lable will be compared with the output of
the SDAT.

B. Item Representation Layer

In this study, we adopt SDAT to the sequential recommen-
dation. The overview architecture is shown in Fig. 2. We can
see that SDAT is built upon the popular Transformer encoder
layer. The key difference between SDAT and Transformer
is that we handle positional encoding more appropriately.
In the following parts, we introduce the key components of
SDAT: Item representation layer, Transformer encoder layer,
and Prediction layer.

Our model is based on the Transformer encoding blocks [6].
Given a user Item =

{
i1, i2, . . . , i|u|−1

}
, we use a look-up

table to convert each item to a dense embedding vector i ∈

t2 t3 … t|u|-1 t|u|

Δ1 Δ2 Δ|u|-1

GRU GRU GRU

…

…

t4

Δ3

GRU

Attention

Time Gain

Word Embedding

i2 i3 …i4 i|u|

t1

Predict Layer

i1

Add&Norm

Add&Norm

Feed Forward

Multi-Head
Attentioni|u|-1

N ×

Fig. 2. The architecture of our proposed SDAT.

RdItem and combine them to construct a matrix representation
item. Here, dItem is the dimensionality of item representations.

item← lookup(Item). (1)

The original Transformer model contains no recurrence and
no convolution, and sequence information is very important.
Therefore, sin function and cos function are used to encode the
sequence to represent the relative position of different items
[6]. However, the results of the superposition of sin function
and cos function are fixed values, which represent only the
absolute information of position. To deal with the relative
position information of items, we introduce time intervals to
quantify the relative position, thereby enhancing the ability of
the Transformer to obtain relative position information.

C. Time Interval Embedding

Time Interval Embedding is an important part of our model
and highly related to the item representation embedding. Each
time interval represents the distance between two adjacent
items. In order to find the time interval embedding, we use the
method of embedding GRU in attention. GRU can maintain the
order between items, and attention can describe the distance
between adjacent items.

GRU [11] is most commonly used for RSs. On our own in-
dustrial dataset, we find that GRU is slightly better than LSTM
and it runs faster. A GRU aggregates information on a token-
by-token basis in sequential order; each token is associated
with a hidden vector. Based on this important feature, we use
GRU to calculate the time interval information between items
in the recommendation process. GRU can analyze the time of
items in the sequence one by one. The time factor will change
with the position of items in the sequence, which means that an
item in the sequence will produce different significant effects
compared with other items.

Based on the above important properties, we design the
GRU with attention to calculate the time interval information
in the recommendation process and solve the disadvantage
of items’ absolute positional encoding. We also introduce the
exponential time gain function to optimize the RSs.

Given a time series ∆ =
{

∆1,∆2, . . . ,∆|u|−1

}
, ∆ denote

the current input; and Ht−1 =
(
h1, h2, . . . , h|u|−2

)
denote the
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previous hidden states. In this paper, we formulate the model
with GRU, whose equations are as follows:

rt = sigmoid(Wr[ht−1,∆t]), (2)

zt = sigmoid(Wz[ht−1,∆t]), (3)

h̃t = tanh(Wh̃[rt � ht−1,∆t]), (4)

ht = (1− zt)� ht−1 + zt � h̃t, (5)

where � is the element-wise(Hadamard) product with the
gate value. rt and zt represent reset gate and update gate
respectively. Through the sigmoid function, the data can be
transformed into values in the range of 0-1 to act as a gating
signal. The reset gate controls how much information of the
previous states are written to the current candidate set h̃t. The
smaller the reset gate, the less information of the previous
states are written. On the other hand, with the help of the
reset gate in the GRU model, the time information will have
different importance, and the corresponding item will have
different importance; meanwhile, it also reflects that the user’s
interest will change with time.

The update gate is used to control the extent to which
the state information of the previous time is brought into the
current state. The larger the value of the update gate, the more
state information of the previous time is brought in.

The h̃t here mainly contains the currently entered ∆t data.
Adding the h̃t to the current hidden state h̃t is equivalent to
remembering the state of the current moment. It represents the
information of the whole sequence before the current position.
We think that in addition to considering the sequence, the time
effect of the sequence should also be considered, that is, the
time interval between adjacent items in the sequence represents
the degree of association between the items. So we add the
time interval attention here. It depends on both itself and the
past hidden states, i.e., at time interval step t, the model com-
putes the relation between ∆t and ∆ = {∆1,∆2, . . . ,∆t−1}
through h̃t−1 and ht with an attention layer:

a∆t = tanh
((

ht + h̃t−1

)
∆t

)
, (6)

where a∆t represents the attention weight of ∆t. This yields
a probability distribution over the hidden state vectors of the
previous tokens [21]. They are fixed values, but in the real
world, as time goes by, when a user interacts with new items,
the weight of the old items should be changed. That is, the
attention weight of each old time interval should also be
appropriately changed.

s∆t =
vta∆t∑t
i=1 v

ta∆i

, (7)

where vt is a weight matrix for optimization. Eq. (7) maps
attention weight a∆t to [0, 1], and constrains the sum of the
attention weights to be 1, the attention weight of the old-
time interval is dynamically updated. s∆t represent the new

attention weight of ∆t. We can compute an adaptive summary
vector ht for the hidden states denoted by s∆i and h:

ht =
t∑

i=1

s∆ihi. (8)

The dynamic adaptive change values ht ensures that the
attention vectors are modified at each time interval step,
increasing the computational accuracy and stability of the
attention generation process. Then, we use the new ht in the
next GRU cell as a new input.

We use attention for inducing relations between time in-
tervals. These relations are differentiable, and it is part of
the representation learning of the items. We treat attention as
an optimized sub-module in the model by stacking multiple
hidden layers in an alternating manner, and it also has an item-
by-item structured relational reasoning module.

The choice of using time interval attention reflects our
first intuition: Increasing the recommendation probability of
combined products. That is to say, it is a very common
phenomenon for users to buy multiple products at the same
time, so the items in the sequence are not in order, but
this situation is not suitable for GRU’s left-to-right modeling
idea. On the other hand, we have considered the Transformer
model without positional encodings, but the result is even
worse. The Transformer cannot identify the items interacted
at the same time. Therefore, we add attention mechanism
based on GRU modeling and focus on the items with small-
time intervals, especially the items with no time interval, and
attention mechanism gives them the greatest weight.

D. Exponential Time Gain Embedding
The attention mechanism is not likely going to be sufficient

for RSs. The reason is that the user’s recent behavior has a
greater impact than the previous one [22]. When a user is about
to purchase an item or service, historical items from a long
time ago are unlikely to be highly relevant. This consideration
reflects the common situation of RSs. Therefore, we take
Time =

{
t1, t2, . . . , t|u|−1

}
as input and add a multiplicative

exponential time gain term to each attention scores as:

gain attentiont = −s∆t � exp
Timet

mean(Time) . (9)

As shown in Fig. 2, ∆1 < ∆2, we can get s∆1 < s∆2 , but
it’s the opposite of what we want. We take the opposite weight
to the attention result s∆t . We leverage the properties of this
function to expand our models by increasing the importance
of the items over time.

The choice of using time information reflects our second
intuition: The exponential time gain function can enhance the
weight of recent records and reduce the influence weight of
early records. In other words, the weight of time information
not only needs to deal with the relative time distance between
items but depends on the timestamp corresponding to the item.

Using the generated gain attention as the weights of the
user sequence, the embedding vector X of all items in the
user sequence is obtained as follows:

X = gain attention� item. (10)
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E. Transformer Encoder Layer

To learn the global dependency between the items and
the time location representation, we employ the self-attention
layers composed of self-attention blocks and a feed-forward
networks.

1) Self-Attention Blocks
Given the input word representation X ∈ RL×dh, where

L is the sequence length, d is the input dimension of each
head and h is the number of attention heads, we use the
linear projection to acquire the query Q, key K and value V .
Denoting splitted inputs for i-th head as Xi ∈ RL×dh where
i ∈ {1, . . . , h}, single-head self-attention can be calculated as:

Qi,Ki, Vi = XiWq, XiWk, XiWv,

Attention (Qi,Ki, Vi) = softmax
(

QiK
T
i√

dk

)
Vi,

(11)

where learnable weights {Wq,Wk,Wv} ∈ Rd×d,
√
dk is a

scaling factor to prevent the effect of large values. We con-
catenate H independent attention heads and perform attention
operation in parallel. It can be calculated as:

Multi-head(Q,K, V ) = Concat (head1, . . . , headh) ,
where headi = Attention

(
QW i

Q,KW i
K , V W i

V

)
.

(12)

The final value produced by Eq.(12) represents a summary
of past items of information on multiple time scales. Previous
work has shown that it is beneficial to jointly attend to in-
formation from different representation subspaces at different
positions. We use multi-head attention to process multiple
time scales of information at different locations effectively. On
the contrary, with a single attention head, averaging inhibits
the performance of the model [6]. Therefore, we use h
independent attention heads to concatenate the final output
values into a vector and pass it to the next layer.

We also use several sub-layers, including one for layer
normalization, one for dropout, a fully-connected feed-forward
layer, and a residual connection layer [6, 23] in each encoder.

2) Feed-Forward Network
Since self-attention is a linear model, to endow the model

nonlinearity, we apply a fully connected feed-forward network
to each position in the sequence and consider interactions
between different latent dimensions. A fully connected feed-
forward network consists of two linear transformations with
a ReLU activation in between. Given a sequence of vectors
[head1, . . . , headn], the computation of a position-wise FFN
sub-layer on any head is defined as:

FFN (headi) = ReLU (headiW1 + b1)W2 + b2, (13)

where W1,W2, b1, and b2 are parameters. We also use normal-
ization to normalize the features of each input and use dropout
to avoid overfitting [8].

F. Prediction Layer

The last component of the SDAT method predicts the user’s
interactive item at time step t|u|, i.e. our model predicts
the masked item i|u| according to the feed-forward network
output. SDAT optimizes the output result through the Adam

optimizer [6]. SDAT generates the recommendation probability
of each item through a fully connected network and a softmax
function. It should be emphasized that the item set with small
time interval in the sequence, the attention model will calculate
that the items in the set have strong relevance, especially
the item set with time interval equal to 0 is regarded as
combination or binding items. Furthermore, even if it is an
item that the user has not interacted with, our model will refer
to the item set of other users and recommend suitable and new
item to the user.

It is worth mentioning that our model does not have decoder
blocks like the original Transformer. Because our model is
used in RSs, compared with the translation task, it does not
have the feature of one-to-one translation. Moreover, we have
done additional experiments and found that the performance
is a negligible reduction after removing the decoder, and
the training time is greatly improved due to the reduced
complexity of the model.

IV. EXPERIMENTS

In this section, we sort the sequences by time, take the
last item as the ground truth, and generate the sequence
representation for the remaining part. In other words, each
user has at least two interactive items. Furthermore, we add
zero-padding to the right side of the sequence to ensure that
each user has the same sequence length. And then, we compare
our model with the start-of-the-art baselines and analyze the
results. Finally, we explore the role of components and the
impact of sequence length on our model.

A. Evaluation Metrics

RSs generate a recommendation list that usually contains
K items sorted by predicted scores for each sequence. The
recommendation list should contain the actual items that the
user interacts with next. We adopt Hit Rate (HR@K), Mean
Reciprocal Rank (MRR@K), and Normalized Discounted Cu-
mulative Gain (NDCG@K) [24] to evaluate the performance.

HR@k: It is short for Hit Ratio, which shows whether the
target item is in the recommended list or not. It does not take
into account the actual ranking of the items.

MRR@k: It is short for Mean Reciprocal Rank, which gives
the reciprocal of the ranking in the result as its accuracy and
then takes the average of all the questions.

NDCG@k: It is short for Normalized Discounted Cumula-
tive Gain, which considers the HR and the orders of ranking.
The results of high relevance will affect the final indicator
score more than the results of general relevance.

The above three evaluation Metrics values range from 0 to
1, with 1 being a perfect score.

B. Datasets

We study the effectiveness of our proposed model SDAT
on three real-world datasets, i.e., Yihaohugong, Taobao, and
Netflix.

Yihaohugong is a company that focuses on providing ser-
vice items for the elderly via its APP in the newly-developing
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industry of elderly service and expects to get the algorithm
help for the RSs through cooperating with our laboratory. The
company can provide desensitization information about users
purchasing elderly service items from January 01, 2019 to
April 05, 2021. The dataset is organized similarly to Movie-
Lens, i.e., each line represents a specific user-item interaction,
which consists of user ID, item ID, and timestamp.

Taobao User Behavior [25] is a dataset of user behaviors
from Taobao, for recommendation problems with implicit
feedback. We select the purchase behavior data from the
original Taobao user behavior data set from November 25 to
December 3, 2017. We choose the product category as items.

Netflix is an American global provider of streaming films
and television series [26]. The Netflix dataset is a subset of
the original data set released for the purpose of the Netflix
Prize. The Netflix dataset consists of 100 million ratings by
480,189 users to 17,770 movies from 1999 to 2006. Because
the Netflix dataset is quite large and training on a subset of
the data can still achieve good results, we randomly use 1/10
of movies.

We filter out users with more than two interactive items
and less than 100 interactive items on the three datasets. The
statistical information of the three datasets after pre-processing
is shown in Table. 1 and Fig. 3.

TABLE I
THE STATISTICS OF DATASETS

Dataset #Users #Items #Interactions Avg.len
Yihaohugong 2,737 127 62,968 23.0

Taobao 286,610 6,946 2,015,839 7.03
Netflix 351,288 1,777 7,348,908 20.9
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Fig. 3. Frequency (y-axis) vs. the sequence length (x-axis) on Yihao-
hugong(left), Taobao(middle), and Netflix(right) datasets.

C. Baselines

We compare our model with the following methods.
1) FPMC [4]: This method contains both a common Markov

chain and the normal matrix factorization for the next item
recommendation.

2) GRU4Rec [11]: This method uses GRU with a ranking
loss function to model user sequences for session-based rec-
ommendations.

3) STAMP [13]: This method is a short-term memory
priority model which captures the user’s long-term preference
from previous clicks and the current interest of the last clicks
in a session.

4) SASRec [18]: This method is a self-attention-based
Transformer model which seeks to identify which items are
‘relevant’ from a user’s action history and use them to predict
the next item.

5) TiSASRec [19]: It is based on SASRec, which models the
absolute position and time interval of items in the sequence.

6) AttRec [27]: This method utilizes a self-attention mech-
anism to infer the item-item relationship from the user’s
historical interactions. The model captures the user’s long-term
preference from previous clicks and the current interest of the
last clicks in a session.

7) Caser [28]: This method models a user’s information in
the current session with the help of Recurrent Neural Networks
(RNNs) and an attention mechanism and exploits collaborative
information to better predict the intent of current sessions by
investigating neighborhood sessions.

8) SR-GNN [14]: This method models session sequences
as directed graphs and uses the graph neural network to learn
the item for recommendations.

9) Bert4rec [24]: This method employs deep bidirectional
self-attention to model user behavior sequences.

D. Performance Comparisons

In this section, we compare the overall performance of our
model with some related baselines. Table 2 shows the experi-
mental results of all methods under the HR@5, MRR@5, and
NDCG@5 evaluation indicators for three datasets.

Our model improves the performance significantly against
all the baselines and achieves state-of-the-art performance.
The performance of the FPMC method on the three datasets
maintains a stable prediction effect without fluctuating results.

Judging from the results of the Yihaohugong dataset,
GRU4Rec has better performance than AttRec, while the
results on the Taobao and Netflix datasets are the opposite.
The advantage of AttRec is that in the long-distance sequence.
The length of user-item interaction sequences in Taobao data
set is generally short, leading to a decrease in the model’s
performance based on the attention mechanism.

Because Taobao data set is sparser than Yihaohugong and
Netflix datasets, this causes Caser to perform worse than
GRU4Rec and STAMP. STAMP mainly focuses on recent
items, which is one of the main reasons for the good per-
formance. It shows that prioritizing items recently have an
important influence on RSs. Furthermore, SASRec performs
distinctly better than STAMP and GRU4Rec, suggesting that
the attention mechanism is a more powerful method for the
sequential recommendation. SR-GNN uses GNN to capture
more complex and implicit connections between items and
achieve great experimental results.

The performance of SASRec, TiSASRec, and Bert4rec is
relatively close to our method. We think it is because the
concept is similar to SASRec, TiSASRec, and Bert4rec, and
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TABLE II
THE PERFORMANCE OF DIFFERENT MODELS ON THE THREE DATASETS, AND THE BEST MODEL IN EACH COLUMN IS IN BOLD.

Yihaohugong Taobao Netflix
HR@5 NDCG@5 MRR@5 HR@5 NDCG@5 MRR@5 HR@5 NDCG@5 MRR@5

FPMC 0.1583 0.1049 0.0864 0.1357 0.0714 0.0493 0.1484 0.0913 0.0725
GRU4Rec 0.2334 0.1749 0.2277 0.1893 0.0976 0.0665 0.1797 0.1183 0.0977
STAMP 0.3100 0.2618 0.2455 0.3164 0.1736 0.1272 0.1992 0.1415 0.1223
SASRec 0.5286 0.4102 0.3995 0.3359 0.2233 0.1846 0.3789 0.2192 0.1677

TiSASRec 0.5370 0.4257 0.4020 0.3438 0.2331 0.1953 0.3906 0.2757 0.2367
AttRec 0.2232 0.1878 0.1739 0.2023 0.1039 0.0707 0.1875 0.1234 0.1021
Caser 0.2296 0.1815 0.1621 0.1740 0.0877 0.0587 0.1562 0.1071 0.0913

SR-GNN 0.4994 0.3581 0.3115 0.3242 0.2093 0.1702 0.4023 0.2431 0.1915
Bert4rec 0.5538 0.3814 0.4242 0.3594 0.2324 0.1899 0.3945 0.2187 0.1605

SDAT 0.5763 0.4511 0.4113 0.3750 0.2656 0.2281 0.4219 0.2936 0.2514

TABLE III
ABLATION STUDY FOR SDAT(HR@5 AND MRR@5). TIME GAIN

FUNCTION AND GRU-ATT OF SDAT GAIN PERFORMANCE BENEFITS.

Yihaohugong Taobao Netflix
HR MRR HR MRR HR MRR

Transformer 0.494 0.304 0.277 0.139 0.305 0.167
-GRU-Att 0.543 0.376 0.305 0.160 0.339 0.183

-Time Gain 0.563 0.403 0.324 0.170 0.367 0.196
SDAT 0.576 0.411 0.375 0.228 0.422 0.251

both are based on Transformer. SASRec emphasizes attention
and negative samples; based on SASRec, TiSASRec designed
a novel time interval perception self-attention mechanism
to learn the weight of different items. Bert4rec focuses on
bidirectional sequence construction. We emphasize sequence
order and attention. The difference is that the GRU-Att used
by SDAT processes the time interval information, which
more accurately considers the order and relative distance
between items. The adaptive function is more suitable for real-
world user orders that are constantly superimposed without
recalculating each user. Another difference is that we have
strengthened the importance of recent items.

On the one hand, it implies that our thinking is correct;
that is, time information has a significant influence, SDAT
can more adequately learn item embeddings. On the other
hand, it is worth considering the common phenomenon of the
sequential recommendation, such as the recent item plays a
vital role in the sequential recommendation.

E. Ablation Experiment

Table 3 shows the performance of two key components on
the three datasets. We find that the GRU-Att after ablation
has the most significant impact, the Time Gain function has a
relatively general impact, especially in large datasets such as
Taobao and Netflix. The above results indirectly show that the
sequential mode plays a positive role in the recommendation.

We study the impact of the hidden dimension d on rec-
ommendation performance. Fig. 4 shows the comparison of
the sequence length between Transformer and SDAT under
HR@5 for the hidden dimension d of 60, 120, and 180. We
have observed some phenomena from this figure. The most
obvious phenomenon is that as the dimensionality increases,
the performance of the Transformer tends to converge, and

0
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Fig. 4. HR@5(z-axis) effectiveness of sequence length(x-axis) and item
dimensions(y-axis) on Yihaohugong datasets.

there is a significant difference in performance from SDAT.
A larger hidden dimension does not necessarily lead to better
model performance, and a suitable hidden dimension is 120.

F. Impact of the sequence length

We also investigate the effect of the sequence length on
the model’s recommendation performances. Following the
method of literature [13, 14], we use the average length of the
Yihaohugong as the basis for dividing short-term and long-
term sequences of users. Items containing less than 23 are
regarded as short-term, while others are regarded as long-
term. Considering the size of the dataset and the proportion
of long sequences, we choose Yihaohugong as the dataset for
the model to evaluate the length of the sequence.

As Fig. 4 shows recommendation performances with differ-
ent lengths on Yihaohugong, as the sequence length increases,
our model performs better than the original Transformer model
in different item dimensions. The time gain function and time
interval are effective in the short sequence, because SDAT
and Transformer have comparable performance. Still, due to
the few influencing factors in the short sequence, SDAT has
no obvious advantage.

When the sequence length is greater than 23, the perfor-
mance of SDAT on the long sequence is significantly better
than that of the Transformer. The reason may be that the long
sequence contains more potential information about the user
characteristics, and SDAT can capture and utilize them more
efficiently. On the one hand, it is due to the positive impact
of the time gain function on recent items. On the other hand,
the combination of GRU-Att highlights the items with short
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time intervals in the sequence, and from another perspective,
it filters out sequence some possible noise items.

The size of the data set and the distribution of unbalanced
items also affect the model’s performance. We randomly
select sub-samples of Taobao and Netflix datasets according
to the ratio of 1/10, 1/5, 1/2. We find that the performance
advantage of SDAT compared to Transformer increases with
the sample improvement. We sample some sequences with
obvious performance gaps and find that some of them are
concentrated on items with lower label frequencies.

V. CONCLUSION

In this paper, we present an extension to Transformer
encoder blocks that can be used to incorporate relative time
distance information for sequences, which improves perfor-
mance for RSs, and it can also be transplanted to other
sequence models. SDAT considers not only the importance of
recent items but also the combined items with high relevance.
These considerations are consistent with the reality of the RSs,
and help users quickly find interesting and high-quality items.
Our experimental results show that SDAT performs the state-
of-the-art methods on three real-world datasets in terms of HR,
MRR, and NDCG.
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